we offer guaranteed stuffs there is a portion for knowledge and learning which enhance the power knowledge to think about it.
Showing posts with label CHEMISTRY NOTEs. Show all posts
Showing posts with label CHEMISTRY NOTEs. Show all posts
Monday, 19 November 2012
Monday, 12 November 2012
Class XI, CHEMISTRY, "Introduction to Fundamental Concepts of Chemistry" with problems
Atom
It is the smallest particle of an element which can exist with all the properties of its own element but it cannot exist in atmosphere alone.
Molecule
When two or more than two atoms are combined with each other a molecule is formed. It can exist freely in nature.
Formula Weight
It is the sum of the weights of the atoms present in the formula of a substance.
Molecular Weight
It is the sum of the atomic masses of all the atoms present in a molecule.
Chemistry
It is a branch of science which deals with the properties, composition and the structure of matter.
Empirical Formula
Definition
It is the simplest formula of a chemical compound which represents the element present of the compound and also represent the simplest ratio between the elements of the compound.
It is the smallest particle of an element which can exist with all the properties of its own element but it cannot exist in atmosphere alone.
Molecule
When two or more than two atoms are combined with each other a molecule is formed. It can exist freely in nature.
Formula Weight
It is the sum of the weights of the atoms present in the formula of a substance.
Molecular Weight
It is the sum of the atomic masses of all the atoms present in a molecule.
Chemistry
It is a branch of science which deals with the properties, composition and the structure of matter.
Empirical Formula
Definition
It is the simplest formula of a chemical compound which represents the element present of the compound and also represent the simplest ratio between the elements of the compound.
Class XI, CHEMISTRY, "Three States Of Matter"
Three States Of Matter
Matter
It is defined as any thing which has mass and occupies space is called matter.
Matter is composed of small and tiny particles called Atoms or
molecules. It exist in three different states which are gaseous, liquid
& solid.
Properties of Gas
1. It has no definite shape.
2. It has no definite volume, so it can be compressed or expanded.
3. A gas may diffuse with the other gas.
4. The molecules of a gas are in continuous motion.
Properties of Liquids
1. A liquid has no definite shape.
2. It has a fixed volume.
3. The diffusion of a liquid into the other liquid is possible if both of the liquids are polar or non-polar.
4. It can be compressed to a negligible.
Properties of Solids
1. A solid has a definite shape.
2. It has a fixed volume.
3. The rate of diffusion of solid with each other is very slow.
4. It cannot be compressed easily.
ATOMIC STRUCTURE (1st YEar CHEMISTRY notes)
Atomic Structure
Atomic Structure
Introduction
About the structure of atom a theory was put on by John Dalton in 1808.
According to this theory matter was made from small indivisible
particles called atoms.
But after several experiments many particles have been discovered with
in the atom which are electrons, protons, neutrons, positrons etc. For
the discovery of these fundamental particles the experiments are as
follows.
1. Faraday’s experiment indicates the existence of electron.
2. Crook’s tube experiment explains the discovery of electron and proton.
3. Radioactivity also confirms the presence of electrons and protons.
4. Chadwick’s experiment shows the presence of neutrons.
The details of these experiments are given below.
Faraday’s Experiment
Passage of Electricity Through Solution
In this experiment Faraday passed the electricity through an
electrolytic solution. He observed that when two metal plates called
electrodes are placed in an electrolytic solution and electricity is
passed through his solution the ions present in the solution are moves
towards their respective electrodes. In other words these ions are moves
towards the oppositely charge electrodes to give up their charge and
liberated as a neutral particles.
Faraday also determined the charges of different ions and the amount of
elements liberated from the electrolytic solution. Due to this
experiment presence of charge particles in the structure of atoms is
discovered. The basic unit of electric charge was later named as
electron by Stoney in 1891.
Diagram Coming Soon
Crook’s Tube Or Discharge Tube Experiment
Passage of Electricity Through Gases Under Low Pressure
Introduction
The first of the subatomic particles to be discovered was electron. The
knowledge about the electron was derived as a result of the study of the
electric discharge in the discharge tube by J.J. Thomson in 1896. This
work was later extended by W. Crooke
Working of Discharge Tube
When a very high voltage about 10,000 volts is applied between the two
electrodes, no electric discharge occurs until the part of the air has
been pumped out of the tube. When the pressure of the gas inside the
tube is less than 1 mm, a dark space appears near the cathode and thread
like lines are observed in the rest of 0.01 mm Hg it fills the whole
tube. The electric discharge passes between the electrodes and the
residual gas in the tube begins to glow. These rays which proceed from
the cathode and move away from it at right angle in straight lines are
called cathode rays.
Properties of Cathode Rays
1. They travel in straight lines away from the cathode and produce shadow of the object placed in their path.
2. The rays carry a negative charge.
3. These rays can also be easily deflected by an electrostatic field.
4. The rays can exert mechanical pressure showing that these consist of material particle which are moving with kinetic energy.
5. The produce fluorescence when they strike the glass wall of the discharge tube.
6. Cathode rays produce x-rays when they strike a metallic plate.
7. These rays consists of material particle whose e/m resembles with electron.
8. These rays emerge normally from the cathode and can be focused by using a concave cathode.
Saturday, 16 June 2012
Class IX, CHEMISTRY, "Chemical Combinations and Chemical Equations"
Class IX, CHEMISTRY, "Chemical Combinations and Chemical Equations"
There are four laws of chemical combinations these laws explained the general feature of chemical change. These laws are:
1. Law of Conservation of Mass
2. Law of Definite Proportions
3. Law of Multiple Proportions
4. Law Reciprocal Proportions
Antoine Lavoiser has rejected the worn out ideas about the changes that take place during a chemical reaction. He made careful quantitative measurements in chemical reactions and established that mass is neither created nor nor destroyed in a chemical change.
1. Law of Conservation of Mass
Statement
It is presented by Lavoiser. It is defined as:
“Mass is neither created nor destroyed during a chemical reaction but it only changes from one form to another form.”
In a chemical reaction, reactants are converted to products. But the total mass of the reactants and products remains the same. The following experiment easily proves law of conservation of mass.
Practical Verification (Landolt Experiment)
German chemist H. Landolt, studied about fifteen different chemical reactions with a great skill, to test the validity of the law of conservation of mass. For this, he took H.shaped tube and filled the two limbs A and B, with silver nitrate (AgNO3) in limb A and Hydrochloric Acid (HCl) in limb B. The tube was sealed so that material could not escape outside. The tube was weighed initially in a vertical position so that the solution should not intermix with each other. The reactant were mixed by inverting and shaking the tube. The tube was weighed after mixing (on the formation of white precipitate of AgCl). He observed that weight remains same.
HCl + AgNO3 ———-> AgCl + NaNO3
2. Law of Definite Proportions
Statement
It is presented by Proust. It is defined as:
“When different elements combine to give a pure compound, the ratio between the masses of these elements will always remain the same.”
Proust proved experimentally that compound obtained from difference source will always contain same elements combined together in fixed proportions.
Example
Water can be obtained from different sources such as river, ocean, well, canal, tube well, rain or by the chemical combination of hydrogen and oxygen. If different samples of water are analyzed, it will have two elements, hydrogen and oxygen and the ratio between their mass is 1:8.
INTRODUCTION TO CHEMISTRY
Class IX, CHEMISTRY, "Introduction to Chemistry"
The branch of science which deals with the composition and properties of matter, changes in matter and the laws or principles which govern these changes is called Chemistry.
Branches of Chemistry
Physical Chemistry
The branch of chemistry which deals with the physical properties and physical behavior of material things is called physical chemistry.
Inorganic Chemistry
The study of all elements and their compounds except carbon is called inorganic chemistry.
Organic Chemistry
The branch of chemistry in which we study the compounds of carbon is called organic chemistry.
Analytical Chemistry
The branch of chemistry which discusses the analytical methods for getting information about chemical compounds and chemical processes is called analytical chemistry.
Biochemistry
The study of chemical compounds present in living things is called biochemistry.
Industrial Chemistry
The application of chemical knowledge in technology and industry and the preparation of industrial products are called industrial chemistry.
Steps Involved in Getting Information in the Scientific Method
Science is not only an integrated knowledge of physical and biological phenomena but also the methodology through which this knowledge is gathered. The process of
scientific discoveries is a cyclic process.
In science the facts are gathered through observations and experiments and then theories or law are deduced. The scientific method include following four steps:
1. Observation
2. Inference
3. Prediction
4. Experiment
1. Observation
The observations are made by the five senses of man. Men made equipments are also used for making observations. For example microscope is used for observing minute objects. Thermometer is used to measure temperature. Sensitive balance is used to determine the mass of a very light object. The capacity of man made instruments is also limited. But it can be improved by improving technology. Thus better and more reliable information are given to the scientists who produce better result. Information acquired through careful observations are called facts. These facts are foundation of scientific knowledge.
2. Inference
The facts gathered through observations are carefully arranged and properly classified. Correlating the knowledge thus acquired with previous knowledge, we try to think of a tentative solution to explain the observed phenomenon. The tentative solution is called hypothesis. The validity of this hypothesis is tested through the results obtained from experiments. The results are discussed by the scientists and the hypothesis is accepted or rejected. The accepted hypothesis then takes the form of theory. A theory when repeatedly gives the same results after experimentation and gives correct explanation of the scientific facts becomes a law or principle.
A theory remains valid until contrary informations are given on the basis of experimentation. Thus a hypothesis requires experimental support. But Avogadro’s hypothesis has been accepted as law without any experimental support.
3. Prediction
Facts, theories and laws which are deduced from observation can help in deducing more facts and phenomenon. This process is called prediction.
4. Experiment
An experiment is an integrated activity, which is performed under suitable conditions with specially designed instruments to get the required information. Such information is used to test the validity of the hypothesis. If a hypothesis is proved correct. It increases the reliability of known facts. If it is proved wrong, it stil can give information which can be used to deduce other results.
Chemistry and Society
Chemistry has played important role for well being of mankind in the form of food, clothing, shelter, medical treatment and chemical fertilizers, crops protected by insecticides, refined food and production of artificial fiber. Production of cement, iron bricks, glass, paint etc are all due to chemistry.
The hazards of chemistry are so vast that no aspect of human life has remained unaffected. The smoke coming from chimneys of chemial industries and from vehicles pollute the air. It is very dangerous to breath in that air. Similarly waste water from industry, pollute canals, rivers and has bad effect on land. Excessive chemical spray on plants also has bad effect.
Friday, 15 June 2012
9th CLASS CHEMISTRY NOTES
Class IX, CHEMISTRY, "Atomic Structure"
The important postulates of Dalton’s atomic theory are:
1. All elements are composed of atoms. Atom is too small so that it could not be divided into further simpler components.
2. Atom cannot be destroyed or produced.
3. Atoms of an element are similar in all respects. They have same mass and properties.
4. Atoms of different elements combine in a definite simple ratio to produce compounds.
Discovery of Electron
A discharge tube is a glass tube. It has two electrode, a source of electric current and a vacuum pump.
(Diagram)
Sir William Crooks (1895 performed experiments by passing electric current through gas in the discharge tube at very low pressure. He observed that at 10-4 (-4 is power to 10) atmosphere pressure, shining rays are emitted from cathode. These rays were named cathode rays. Cathode rays are material particles as they have mass and momentum.
Properties of Cathode Rays
The properties of these particles are given below:
1. These particles are emitted from cathode surface and move in straight line.
2. The temperature of the object rises on which they fall.
3. They produce shadow of opaque object placed in their path.
4. These particles are deflected in electric and magnetic fields.
5. These particles are deflected towards positive plate of electric field.
Discovery of Proton
Gold Stein (1886) observed that in addition to the cathode rays, another type of rays were present in the discharge tube. These rays travel in a direction opposite to cathode rays. These rays were named positive rays. By using perforated cathode in the discharge tube the properties of these rays can be studied. Positive rays are also composed of metered particles. The positive rays are not emitted from anode. They are produced by the ionization of residual gas molecules in the discharge tube. When cathode rays strike with gas molecule, electrons are removed and positive particles are produced.
Properties of Positive Rays
1. They are deflected towards negative plate of electric field. Therefore these rays carry positive charge.
2. The mass of positive rays is equal to the mass of the gas enclosed in the discharge tube.
3. The minimum mass of positive particles is equal to the mass of hydrogen ion (H+). These positive ions are called Protons.
4. The charge on proton is equal to +1.602×10-19 Coulomb. (-19 is power of 10)
Natural Radioactivity
The phenomenon in which certain elements emit radiation which can cause fogging of photographic plate is called natural radioactivity. The elements which omit these rays are called radioactive elements like Uranium, Thorium, Radium etc. There are about 40 radioactive elements. Henri Bequrel (1896) discovered radioactivity.Madam Curei also has valuable contribution in this field.
In natural radioactivity nuclei of elements are broken and element converted to other elements. Natural radioactivity is nuclear property of the elements.
Alpha Rays
1. They are helium nuclei. They are doubly positively charged, He2+.
2. They move with speed equal to the 1/10th of the velocity of the light.
3. They cannot pass through thick-metal foil.
4. They are very good ionizer of a gas.
5. They affect the photographic plate.
Beta Rays
1. They are negatively charged.
2. They move with the speed equal to the velocity of light.
3. They can pass through a few millimeter thick metal sheets.
4. They are good ionizer of a gas.
5. They can affect the photographic plate.
Gamma Rays
1. They are electromagnetic radiations.
2. They travel with speed equal to velocity of light.
3. They carry no charge.
4. They have high penetration power than alpha and beta rays.
5. They are weak ionizer of gas.
Rutherford Experiment and Discovery of Nucleus
Lord Rutherford (1911) and his coworkers performed an experiment. They bombarded a very thin, gold fail with Alpha particles from a radioactive source. They observed that most of the particles passed straight through the foil undeflected. But a few particles were deflected at different angles. One out of 4000 Alpha particles was deflected at an angle greater than 150.
(Diagram)
Conclusion
Following conclusions were drawn from the Rutherford’s Alpha Particles scattering experiment.
1. The fact that majority of the particles went through the foil undeflected shows that most of the space occupied by an atom is empty.
2. The deflection of a few particles over a wide angle of 150 degrees shows that these particles strike with heavy body having positive charge.
3. The heavy positively charged central part of the atom is called nucleus.
4. Nearly all of the mass of atom is concentrated in the nucleus.
5. The size of the nucleus is very small as compared with the size of atom.
Defects of Rutherford Model
Rutherford model of an atom resembles our solar system. It has following defects:
1. According to classical electromagnetic theory, electron being charged body will emit energy continuously. Thus the orbit of the revolving electron becomes smaller and smaller until it would fall into the nucleus and atomic structure would collapse.
2. If revolving electron emits energy continuously then there should be a continuous spectrum but a line spectrum is obtained.
(Diagram)
Bohr’s Atomic Model
Neil Bohr (1913) presented a model of atom which has removed the defects of Rutherford Model. This model was developed for hydrogen atom which has only proton in the nucleus and one electron is revolving around it.
Postulates of Bohr’s Atomic Model
The main postulates of Bohr’s Model are given below:
1. Electrons revolve around the nucleus in a fixed orbit.
2. As long as electron revolves in a fixed orbit it does not emit and absorb energy. Hence energy of electron remains constant.
3. The orbit nearest to the nucleus is the first orbit and has lowest energy. When an electron absorbs energy it jumps from lower energy orbit to higher energy orbit. Energy is emitted in the form of radiations, when an electron jumps from higher energy orbit to lower energy orbit. The unit of energy emitted in the form of radiations is called quantum. It explains the formation of atomic spectrum.
4. The change in energy is related with the quantum of radiation by the equation :
E2 – E1 = hv
where
E1 = Energy of first orbit
E2 = Energy of the second orbit
h = Planck’s constant
v = Frequency of radiation
Atomic Number
The number of protons present in the nucleus of an atom is called atomic number or proton number. It is denoted by z. The proton in the nucleus of an atom is equal to number of electrons revolving around its nucleus.
Mass Number
The total number of the protons and neutrons present in the nucleus of an atom is called mass number. The protons and neutrons together are called nucleon. Hence it is also known as nucleon number. It is denoted by A. the number of neutrons present in the nucleus of an atom is rperesented by N.
Mass Number = No of Protons + No of neutrons
A = Z + N
Isotopes
The atoms of same elements which have same atomic number but different mas number are called Isotopes. The number of protons present in the nucleus of an atom remains the same but number of neutrons may differ.
Isotopes of Different Elements
Isotopes of Hydrogen
Hydrogen has three isotopes:
1. Ordinary Hydrogen or Protium, H.
2. Heavy Hydrogen or Deutrium, D.
3. Radioactive Hydrogen or Tritium, T.
Protium
Ordinary naturally occurring hydrogen contains the largest percentage of protium. It is denoted by symbol H. It has one proton in its nucleus and one electron revolve around the nucleus.
Number of Protons = 1
Number of Electrons = 1
Number of Neutrons = 0
Atomic Number = 1
Mass Number = 1
Deutrium
Deutrium is called heavy hydrogen. The percentage of deutrium in naturally occuring hydrogen is about 0.0015%. It has one proton and one neutron in its nucleus. It has one electron revolving around its nucleus. It is denoted by symbol D.
Number of Proton = 1
Number of Electron = 1
Number of Neutrons = 1
Atomic Number = 1
Mass Number = 2
Tritium
Radioactive hydrogen is called tritium. It is denoted by symbol T. The number of tritium isotope is one in ten millions. It has one proton and 2 neutrons in its nucleus. It has one electron revolving around its nucleus.
Number of Proton = 1
Number of Electron = 1
Number of Neutron = 2
Atomic Number = 1
Mass Number = 3
Subscribe to:
Posts (Atom)